| T | |
| test, neural_net | |
| test_data, neural_net | |
| train, neural_net | |
| TRAIN_BATCH, FANN | |
| train_epoch, neural_net | |
| TRAIN_INCREMENTAL, FANN | |
| train_on_data, neural_net | |
| train_on_file, neural_net | |
| TRAIN_QUICKPROP, FANN | |
| TRAIN_RPROP, FANN | |
| Training | |
| Training Data Manipulation | |
| Training Data Training | |
| training_algorithm_enum, FANN | |
| training_data | |
| ~ | training_data, training_data | 
| Types | 
Test with a set of inputs, and a set of desired outputs.
fann_type * test( fann_type * input, fann_type * desired_output ) 
Test a set of training data and calculates the MSE for the training data.
float test_data( const training_data & data ) 
Train one iteration with a set of inputs, and a set of desired outputs.
void train( fann_type * input, fann_type * desired_output ) 
Train one epoch with a set of training data.
float train_epoch( const training_data & data ) 
Trains on an entire dataset, for a period of time.
void train_on_data( const training_data & data, unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error ) 
Does the same as train_on_data, but reads the training data directly from a file.
void train_on_file( const std:: string & filename, unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error ) 
Encapsulation of a training data set struct fann_train_data and associated C API functions.
class training_data 
Default constructor creates an empty neural net.
training_data( ) : train_data(NULL) 
Provides automatic cleanup of data.
#ifdef USE_VIRTUAL_DESTRUCTOR virtual #endif ~training_data()